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Abstract

Background: Existence of flows and convection is an essential and integral feature of many excitable media with wave
propagation modes, such as blood coagulation or bioreactors.

Methods/Results:Here, propagation of two-dimensional waves is studied in parabolic channel flow of excitable medium of
the FitzHugh-Nagumo type. Even if the stream velocity is hundreds of times higher that the wave velocity in motionless
medium (w), steady propagation of an excitation wave is eventually established. At high stream velocities, the wave does
not span the channel from wall to wall, forming isolated excited regions, which we called ‘‘restrictons’’. They are especially
easy to observe when the model parameters are close to critical ones, at which waves disappear in still medium. In the
subcritical region of parameters, a sufficiently fast stream can result in the survival of excitation moving, as a rule, in the
form of ‘‘restrictons’’. For downstream excitation waves, the axial portion of the channel is the most important one in
determining their behavior. For upstream waves, the most important region of the channel is the near-wall boundary layers.
The roles of transversal diffusion, and of approximate similarity with respect to stream velocity are discussed.

Conclusions:These findings clarify mechanisms of wave propagation and survival in flow.
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Introduction

The number of biological systems with complex modes of
excitation propagation is very large: blood coagulation [1,2],
excitable muscular systems [3], ecological systems [4,5], neural
tissue [6], etc. Many chemical and physical systems as well show
complex spatio-temporal behaviour [7–10]. Propagation of
excitation in many such systems can have the form of travelling
pulses or trigger waves, which is typical for active media [11–13].
Despite the great variability, excitation spreading in these systems
has many common properties. Therefore, use of the simplest
models of active media played and still plays a vital role in the
understanding of the mechanisms of excitation propagation in
strongly non-equilibrium media. The model of FitzHugh-Nagumo
is one of the simplest and the most widely used models of such
systems.

Existence of flows and convection is an essential and integral
feature for some of these systems, such as blood coagulation or
bioreactors. For example, the stage of spatial propagation in blood
coagulation occurs in a self-sustained manner [2,14] because of the

positive feedback activation of factor XI (the uppermost factor in
the clotting cascade) by thrombin (the lowermost enzyme of the
cascade). Both experiments and computer simulation show that
flow can play a critical part in both the regulation of excitation
threshold [15,16] and the process propagation [17]. As the process
occurs in flow, errors at this stage can result in pathological
thrombus formation in the vasculature. There is an increasing
number of problems, where flows define such processes as cell
differentiation [18] or pattern formation in reaction-diffusion
system in laminar flow [19], patterning of leaf veins [20], patterns
arising from a combination of flow and diffusion in a two-
dimensional (2D) reaction-diffusion system [21], in convectively
unstable, oscillatory media [22] and many others.

Great variety of studied systems and differences in the
experimental conditions lead in significant discrepancies between
the results. In studies [19,23,24], a two-dimensional flow reactor
was modeled, in which a self-sustaining reaction ran. The flow
profile was assumed to be parabolic, with the velocity being largest
at the channel axis and dropping to zero next to the channel walls.
The reaction was initiated upon entry into the channel. Being
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influenced by flow, the flat reaction front became curved, this front

advanced at a constant velocity, retaining its shape. Mathemat-

ically, the system was described with one partial differential

equation. Numerical analysis of the model showed that stationary

propagation of trigger waves is possible in a broad flow velocity

range. The faster the flow, the more the reaction front is curved.

No stationary propagation of a plane wave, unless with wavefronts

strictly along the stream lines, was observed in a two-dimensional

active medium described with FitzHugh-Nagumo (FHN) equations

(equations (2) below) [26]. The medium was assumed to be infinite

and moving along the x axis at velocity V yð Þ~ay, where a is constant.

For a.a*, the excitation waves with initial orientation of the wave

front orthogonal to the stream lines faded out.

It was shown in [25] that boundary conditions typical for blood

clotting could arrest propagation of clotting in narrow vessels.

This discrepancy may be due to differences in the active media,

flow types, and boundary and initial conditions in those studies. To

understand the particular role of convectional and diffusional

transfer, it was of interest to consider a simple model of active

medium. In this study, we used a FHN model to analyze two-

dimensional excitation waves running along the direction of a

parabolic flow with the velocity V yð Þ(see equation (1) below). The

results of our numerical analysis are as follows.

(1) Even if the stream velocity is hundreds of times higher that the

wave velocity in still medium (w), steady propagation of an

excitation wave is eventually established, and its shape and

velocity v do not vary with time thereafter.

(2) At high stream velocities, the steadily propagating excitation

wave does not fill the channel completely, forming spatially

localised excited regions, restrictons. They are especially easy

to observe when the parameter values are close to the critical

ones.

(3) In the parameter region where no excitation wave exists in the

still medium, a sufficiently fast stream is helpful for survival of

steadily moving excitation (usually in the form of restrictons).

Methods

Mathematical model description
Let us consider a rectangular box of width H (0ƒyƒH ) in the

(x,y) plane, assuming that the medium is moving along the x axis at

velocity V(y) with a parabolic velocity profile (corresponding to

laminar flow of a viscous incompressible fluid):

V yð Þ~ay H{yð Þ, aw0; Vmax~
1

4
aH2 ð1Þ

Let variables u1 and u2 denote ‘‘activator’’ and ‘‘inhibitor,’’

respectively, in the FHN model. The equations describing wave

processes in the channel then read:

Lu1

Lt
~c1u1 u1{c2ð Þ1{u1ð Þ{u2zD1Du1{V yð Þ

Lu1

Lx
ð2:1Þ

Lu2

Lt
~e c3u1{u2ð ÞzD2Du2{V yð Þ

Lu2

Lx
, D~

L2

Lx2
z

L2

Ly2
ð2:2Þ

This set of equations differs from the classical FHN model in

that both diffusion coefficients are assumed to be nonzero.

Channel walls (horizontal boundaries) are assumed to be

impermeable.

Parameters c2, c3, e, D1, and D2 were fixed at the values used in

[26]:

c2~0:02, c3~5, e~0:1; D1~D2~1 ð3Þ

Parameters a, c1, and channel width H were varied in different

numerical experiments. At parameter values (3), the excitable

medium is monostable for 0vc1v20 and V(y);0: it has a single

stable spatially uniform state (u1~u2:0), and a low excitation

threshold. In the respective one-dimensional system, for c1§8,

there are excitation pulses running at a constant velocity w without

changing in shape: u1 x,tð Þ~Q1 x{wtð Þ, u2 x,tð Þ~Q2 x{wtð Þ. If

the medium is not moving, the same formulas describe a solution

to equations (2) in the form of a plane wave traveling along the

channel. If we define the wave width L as the distance between

level lines u1~0:1 (for reference, u1max~0:9), we obtain for c1~9
and the chosen parameter values that L~8:3 and the wave

velocity w~1:65. The values L and w set the natural scales for

length and velocity in this system.

Applying a perturbation to one channel end, we observe how an

excitation wave subject to a stream is evolving. In numerical

experiments, channel length L (0ƒxƒL) is chosen so large that its

further increase does not change the results.

To initiate a wave at t~0, we set u1~u�
1 inside a narrow

rectangle [x1ƒxƒx2, 0ƒyƒH] and u1:0 outside this rectangle

(u2:0 everywhere). If a perturbation is applied to the left

boundary of the channel (x1~0), a wave arises that runs down the

stream. If x2~L, the wave runs up the stream. In numerical

experiments, we employed a coordinate system moving in the

positive x direction at velocity ~vv. In other words, we transformed

V yð Þto ~VV yð Þ~V yð Þ{~vv, with ~vv being chosen so as to have the

stationary wave staying still (that is, it was taken equal to the wave

velocity v in the resting coordinate frame).

The following non-permeability boundary conditions were used

on the channel walls:

u’1y~0, u’2y~0 f or y~0 and for y~H ð4Þ

Model solution. For the numerical analysis of the model, the

partial differential equations (2) were replaced with the difference

equations. As in [23], we used alternating direction implicit

method for differential items, and calculated explicitly the non-

differential ones. Therefore, the difference scheme has the second

order of approximation with regard to spatial variables x and y,

and the first order with regard to time t. In order to find functions

u(x,y,t) with acceptable accuracy, small intervals h should be used

for x and y, and very small interval t for t.

For steady-state processes, upon which this study is focused, the

difference equations requirements can be significantly relaxed,

because we use moving co-ordinates (substituting V yð Þ for

V yð Þ{~vv). For most calculations, we used h = 0.1 and t~0:01.

For comparison, characteristic length in the system is L&8, and

charateristinc time is tchar~L=w&5 (see above). Therefore, the

typical number of nodes in the calculations was of the order of 105

(for H = 20 and L = 400). The typical time to achieve steady state

for a travelling wave was 20–30 (~4{6 tchar), and the standard

calculation time was from 0 to tmax~100. We had to increase the

value of tmax at near-critical parameter values; and tmax was also

increased several-fold when we doubted that the found mode is a
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steady state. When necessary, the validity of conclusions was

confirmed by control calculations with smaller h and t.

Results

The excitation waves in our study are autowaves: their shape

and velocity in the steady-state mode do not depend on the

excitation type. For example, it is possible to double the width of

the initial excitation region (the difference x2{x1, see the

Methods section). This would not affect a steadily moving wave.

A steady-state wave can fill up the channel completely (the

excitation would then be present at all lines y~const) or only

partly. In order to clearly distinguish between them, we shall

henceforth use the term ‘‘wave’’ for all types of excitation

propagation, while the term ‘‘restricton’’ will be reserved for

isolated waves, which fill up the channel only partly as described

below.

Waves in flow
After a rather short transient period, steady-state excitation

propagation is attained in the channel (Fig. 1). The front shape

and velocity depend on the propagation direction. If the

propagation direction coincides with the stream direction, the

front edge of the wave resembles a parabola (Fig. 1a–d) whose

vertex lies on the channel axis.

Parameters of a wave moving along the current depend on the

flow velocity. The waves at low velocities are similar to those

without flow in all respects. In the co-ordinates moving with the

velocity Vmax, the wave velocity decreases with the increase of flow

velocity as a square root of the maximal velocity with a

proportionality coefficient of 0.1 at small flow velocities. At

Vmaxw30, the dependence becomes more strong (Table 1). The

influence of the flow velocity on the parameters of wave is most

probably determined by tranversal diffusion (diffusion in the y

direction). Increase of the forward front curvature coincides with

the increase of the activator outflow across the current.

The shape of the upstream wave is very different from that of

the downstream one. The front edge consists of two curves

meeting at a sharp angle on the channel axis. This wave is nearly

motionless relative to the vessel walls (Table 1). In mid-stream, the

wave velocity relative to the medium is approximately equal to the

stream velocity but oppositely directed. At small flow velocities, the

wave moves against the current even with regard to the channel

walls. The wave is carried away along the current only when the

Figure 1. Effect of stream velocity on the shape of (a–d) downstream and (e–h) upstream waves, as calculated for c1~9, H~32, and
L~400: (a, e) Vmax~8, a~0:03125; (b, f) Vmax~16, a~0:0625; (c, g) Vmax~32, a~0:125; and (d, h) Vmax~64; a~0:25. The stream direction is
from left to right. Activator u1 (0vu1v0:9) is shown on a nine-level gray scale, with white corresponding to u1v0. Note that the x and y axes are
scaled differently (y axis is fivefold expanded relative to the x axis).
doi:10.1371/journal.pone.0004454.g001
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flow velocity is ,5-fold higher than the wave velocity in an

immobile medium. In other words, in this case also, the wave

velocity relative to the medium can be much higher than velocity

w: in Figs. 1d and 1h, Vmax=w~40. Although the Fig. 1a–d and

Fig. 1e–h look very differently, they really are akin to each other in

the sense that level lines of both variables in regions of fast

excitation propagation relative to medium are tilted considerably,

making a small angle with the x axis. Strikingly, steady-state

propagation of the wave is achieved in a medium whose parts are

moving at different velocities. We hypothesize that the shapes

observed are such that diffusion coupling of adjacent areas of the

wave allows the arising excitation structures to move as a whole.

Two-dimensional wave as a combination of one-
dimensional waves

Consider a stationary moving excitation wave for a fixed y~c.

For each of these lines, we observe a one-dimensional excitation

wave. If these waves were independent, their velocity with regard

to the medium would be w (the velocity of a flat wave in the

immobile medium), while velocities with regatd to channel walls

would be w+V(c) or 2w+V(c). Their width would be L (the same

for any c). However, one-dimensional waves along different

horizontal straight lines are related to one another: in equations

(2), Du’’yy describes diffusion across the stream, which binds a set

of independent one-dimensional waves into one excited area and

determines its structure. With the increase of Vmax, the wave

velocity with respect to the medium is decreased. This is

particularly obvious in the channel axis (Table 1). Away from

the channel axis, the wave front progressively curves (fig 1 left),

giving rise to transversal diffusion of activator u1 (in the direction

from the channel axis to the wall). Transversal diffusion brings

activator to adjacent lines earlier than the wave front carried by

the stream comes there. Even small amounts of activator are

sufficient to excite the medium. The more the front is oblique, the

larger is the contribution from activator transversal diffusion, and

the higher is the velocity of excitation propagation relative to the

flowing medium. Thus, for downstream excitation waves, the axial

portion of the channel is leading. In particular, it is this portion

that determines the wave velocity. In other words, it can be said

that the velocity of the wave is mostly determined by the processes

around its most advanced part, convex in the direction of

propagation.

The overall effect is due not only to one-dimensional waves near

the channel axis. Those farther away from the axis also play a role.

Reaching any given x~const later, they support the excitation on

the lines that are nearer to the channel axis. Therefore, the length

of the excitation section on any fixed y (y~c) is greater than L, as

can be clearly seen by comparing the profiles of the variables in

still medium (Fig. 2a) with their profiles in flowing medium built at

different distances from the channel axis (Figs. 2b–2d). This

increase is likely due not only to the change of the wavefront

inclination with regard to the axis of flow, but also to the increase

of the length of the excited region along the direction

perpendicular to the wavefront.

To ascertain the statement that the axial portion of the channel

determines the wave velocity relative to the channel walls, we used

two approaches: 1) compared the steady-state characteristics of

excitation in the channel with a parabolic flow profile and in the

channel with a composite profile following the same parabola from

the channel axis to one quarter of the channel width and

remaining constant thereafter (Fig. 3), and 2) increased the

channel width.

Let the flow profile V yð Þremain parabolic over the axial half of

the channel (H=4vyv3H=4), and become constant and equal to

V H=4ð Þbeyond the axial half. For the two profiles, we calculated

values of u1 (‘‘activator’’) using the same calculation procedure and

the same values of model parameters. In calculations, c1~9:0. As

an example, we present the results of one numerical experiment, in

which channel width H is 32, a~0:25, and Vmax~64. Comparing

the results for the two flow profiles, we see that the steady-state

wave velocities differ by less than 1%. Recall that the velocity of

the downstream excitation wave is close to Vmax~
1
4

aH2.

As for the values of function u1 x,y,tð Þand u2 x,y,tð Þ, which are

of interest to us, they are found in a numerical experiments for

discontinuous range of independent variables: xk~k:Dx
yk~l:Dy, tn~n:Dt. By fixing Dx,Dy,Dt, we compared values of

u1 for the two flow profiles. The results for the same initial

conditions for each set of discretization steps were the following.

1) Values on the channel axis (y~ 1
2

H ), as well as on the line

y~ 3
8

H, were nearly equal, the difference between the values

calculated for the same x,y and t was less than 0.005.

2) The u1 values on the boundary of the non-changed region,

the line y~ 1
4

H, were quite similar at the front edge and

differed significantly at the rear edge (Fig. 3a). The rear of the

two-dimensional wave experienced the effect produced on the

central region by the one-dimensional waves, which were

‘‘lagged’’ because of the stream.

Naturally, difference between values of u1 for the two

calculations was great in the region where the flow profile has

been modified (that is, for yv
1
4

H and yw
3
4

H).

In the second test, the parameter a was fixed and the channel

width was doubled. The u1 and u2 in the central half of the channel

remained almost unchanged; there was only a four-fold increase in

Vmax (velocity along the channel axis). The result is easy to explain

because, if H is changed into 2H in equation (1), only a constant

equal to 3
4

H2 is added to function V yð Þin the central half of the

wider channel. The influence of the boundary conditions at the

walls is small in the central region; the increase in the stream velocity

by a constant only adds that same constant to the wave velocity.

Upstream waves
For upstream waves (Fig. 1e–h), the central half of the channel is

less important than for downstream waves, because activator

diffuses away from there to already excited areas. In contrast, the

important region is near the channel walls. Activator transversal

diffusion from this region toward the channel axis provides for the

concerted propagation of all one-dimensional waves. This

behavior is observed even for very high Vmax; at high Vmax, the

steady-state wave velocity v (Table 1) is low, but the wave may

Table 1. Dependence of the wave velocity on the maximal
flow velocity.

Vmax 0 2 4 8 16 32 64 128

Wave along
the current

(v-Vmax)* 1.6 1.5 1.4 1.3 1.2 1.0 0.8 0.2

Wave against
the current

v** 21.6 21.0 20.6 0.1 1.3 3.3 7.1 14.3

Parameters: c1~9, H~16, Vmax = aH2/4.
*The velocity of the wave moving along the current in relation to the maximal
flow velocity.

**Negative velocity values mean movement against the current with regard to
the channel walls.

doi:10.1371/journal.pone.0004454.t001
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move in the direction of the stream. Using the test like the first of

the two described above, we have shown that the leading region in

this case is the near-wall layer: a profound perturbation of the flow

profile in the central half of the channel produced a negligible

effect on the wave near the wall.

For upstream waves, the u1 and u2 profiles along lines parallel to

the channel axis are shown in Figs. 2f–2h. The nearer a line is to

the wall, the more the profiles resemble their counterparts in the

motionless medium. Away from the walls, the profiles do not

change qualitatively; they only become more extended with

increasing stream velocity (Figs. 2g, 2h).

Let the flow profile V yð Þremain parabolic near the channel

walls (yv
1
4

H and yw
3
4

H), and become constant and equal to

V H=4ð Þover the central half (H=4vyv3H=4). The numerical

results for the two profiles in this case are analogous to those

obtained with downstream waves. Again, in calculation,

H~32, a~0:25M.

1) The steady-state wave velocities calculated for the two profiles

differ by less than 1%.

It should be noted that the velocities of upstream waves are low.

2) The u1 values on the channel wall (y~0), as well as on the

line y~ 1
8

H, are nearly equal for the two calculations:, the

difference between the values calculated for the same x,y and

t is less than 0.005.

Figure 2. Longitudinal profiles of u1 (thick lines) and u2 (thin lines) for downstream (left) and upstream (right) waves built for
various distances across the channel. The stream direction is from left to right. In left panels, the distance across the channel is measured from
the channel axis: (b) 0, (c) 3.4, and (d) 6.8. In right panels, the distance is measured from the channel wall: (f) 0, (g) 3.4, and (h) 6.8. For comparison,
profiles of a flat waves moving from left to right (a) and from right to left (e) are shown. In calculations, c1~9, a~1, H~16, L~500; Vmax~64.
doi:10.1371/journal.pone.0004454.g002
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3) The u1 values on the line y~ 1
4

H are quite similar at the front

edge and different significantly at the rear edge (Fig. 3b),

because the rear of the two-dimensional wave experiences the

effect that ‘‘lagged’’ one-dimensional waves produce on the

peripheral near-wall region.

Naturally, difference between values of u1 for the two

calculations is great in the region where the flow profile has been

modified (that is, for 1
4

Hvyv
3:
4

H).

Going over to discussing the second test, we write the velocity

profile in the form:

V yð Þ~aHy{ay2

Doubling the channel width alters greatly the velocity profile

near the wall y~0. Varying H, we can keep the stream velocity

unchanged in the main (linear) term by maintaining V ’ 0ð Þ, i.e., the

value c~aH. When the results calculated for H~32, a~0:125
were compared with those calculated for H~64, a~0:0625, it

appeared that the difference in the wave velocity was approxi-

mately 2%. In this experiment, doubling the channels width

doubled the stream velocity along the channel axis and changed

considerably the overall velocity profile (which remained parabol-

ic). So, the velocity of the upstream wave is determined by the

near-wall regions and depends mainly on the velocity gradient at

the channel wall.

Effect of the stream velocity
Figures 1a–1d show how the steady-state excitation shape varies

with the stream velocity. The faster the stream, the more the

excitation structure elongates in the stream direction. In numerical

experiments, doubling the stream velocity nearly doubled the

elongation in the x-axis direction. If the stream is very fast, the

terms of the Du’’xx type in equations (2) are much smaller than the

terms of the Vu’x type, suggesting that the diffusion along the

streamlines is insignificant. If we omit the terms containing second

derivatives with respect to x, the problem acquires the following

property of similarity. In the channel being considered, a k-fold

increase in the stream velocity stretches out the profiles along the x

axis by k times. However, longitudinal diffusion at the front edge of

the wave is necessary for the propagation of the leading one-

dimensional wave. Therefore, although approximate similarity

with respect to parameter a (or Vmax) is observed over the most

part of the excited area, there is no similarity in a narrow region

near the front edge of the wave.

Restrictons
The capacity of transversal diffusion to even out the wave

velocities of adjacent areas is not infinite. After a stream velocity

attains some critical value, a downstream wave can lose contact

with the channel walls and turns into a ‘‘restricton’’, that is, an

excited structure moving at a constant velocity in the middle of the

channel. This term was introduced in order to emphasize that

excitation is spatially localized, restricted both along and across the

channel axis. Control calculations employing densening grids over

extended time intervals (the temporal interval exceeding that

required for a system to achieve steady state by a factor of 10 and

more) confirmed that restrictons are stable structures.

The critical velocity depends on the ‘‘chemical’’ parameters of

the system. With our choice of c2, c3 and e (see (3)), one-

dimensional pulses exist for c1§8. Near this critical value, the one-

dimensional waves are ‘‘weaker’’ and more susceptible to external

disturbances. In Figs. 4a–4c, one can see how the wave shape

varies with increasing stream velocity for c1~8:1. Waves are more

complex in shape (cf. Fig. 1d with Figs.4a, 4b. In the leading

region in the mid-channel, something like a nucleus develops: a

zone of large u1 values (activator) surrounded on all sides with

large u2 values (inhibitor). For c1~8:1, restrictons emerged in a

rather wide channel at a~1:32 and existed throughout the stream

velocity range used (Figs. 4c–4e). We also observed restrictons for

H = 20, L = 800, and the stream velocity Vmax as large as 2000.

For c1w8:3, no restricton was generated even at stream velocities

hundreds of times higher than the plane wave velocity w in still

medium. Restricton solutions were also found for the waves moving

against the current, but only within the region of parameters

c1ƒ7:6 when waves do not exist in an immobile medium (Figs. 4h–

4j). An upstream wave breaks down in the middle, giving rise to two

slow restrictons that move as if being pressed against the wall. Their

velocity with regard to the channel walls is small.

One of the major results of study [26] was that a flat front

initially perpendicular to flow breaks when the velocity gradient

exceeds the critical one. Appearance of restrictons in our

calculations is also related to the breaking of that portion of the

front, which is located in the maximal-gradient region. However,

we were unable to find a direct correspondence between these

Figure 3. Comparison of plots u1 x,y�ð Þcalculated for the parabolic (thick line) and modified (thin line) flow profiles: (a) downstream
and (b) upstream waves. Here, y� ~H=4 is the boundary between the preserved and changed parts of the flow. In calculations, c1~9,
H~32, a~0:25, L= 500, and Vmax~64. The stream direction is from left to right.
doi:10.1371/journal.pone.0004454.g003
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phenomena. In our simulations, the value of the critical gradient

strongly depended on the model parameters. At c1.8.3, restrictons

did not appear even when the gradient (which is maximal near the

channel walls) exceeded the critical value of [26] ten-fold and

more.

Bifurcation diagram
The emergence of restrictons and other phenomena described

above essentially depend on the parameters of the stream and on

the ‘‘chemical’’ parameters of system (2). We consider the effect of

the latter taking parameter c1 as an example.

The diagram in Fig. 5 is composite; its upper section is for

downstream waves, while the lower one is for upstream waves. In

both cases, the calculations were performed as follows. The c1

value was fixed, and the a parameter determining the flow velocity

was changed gradually. For each a, we waited until stable state was

achieved and monitored change of stable modes with the change

of a.

Downstream waves
Figure 5 shows the {a,c1} plane sectioning of the parameter

space of solutions to model (2) (see eq. 1). In region I, the initial

excitation rapidly vanishes. Region II corresponds to the existence

of restrictons. For downstream waves increasing the stream

velocity and crossing the boundary between regions II and III at

fixed c1, one would observe how the wave structure loses contact

with the walls and gives rise to an restricton. One-dimensional

pulses exist for c1wc1crit~8. Near the critical value of this

parameter, system (2) exhibits the richest behavior. For example,

the u1 and u2 profiles along lines parallel to the channel axis may

pass through two maxima, which is explained by the back effect of

peripheral regions on more central ones: they feed the one-

dimensional wave that have already begun to fade. The central

part of the wave forms a nucleus from which wings extend to the

vessel wall (Fig. 6a).

As the stream velocity increases, the wave loses contact with the

walls, and only the central nucleus survives. The restricton that

emerges (Fig. 6b) is in fact this nucleus. Their resemblance is

clearly seen from a comparison of the ui profiles for a wave still

touching the walls (Fig. 6c) and the restricton arising at a

somewhat higher stream velocity (Fig. 6d).

The closer the ‘‘chemical parameter’’ c1 to its critical value, the

lower the stream velocity is at which restrictons arise. As c1

increases, the stream velocity at which restrictons emerge rapidly

rises. For c1w8:3, no restricton exists at any studied stream

velocity. We should remind that flow appears to be a factor

stabilizing waves. Restrictons were found in the parameter region

where no excitation exists in still medium. Waves at c1~7:5v8:0
resembled restrictons arising at c1~8:1w8:0 (cf. Figs. 4c, 4e with

Figs. 4f–4g). There exists a small c1 range (7.725–7.9), in which

three types of behavior are observed with an increase in the stream

velocity. At small a, the excitation vanishes. At larger a, waves

develop. A further increase in a gives rise to restrictons.

An increase in the channel width produces little effect, if any, on

the restricton shape if a is kept constant. Actually, if a is the same,

the flow profile in the central part of the channel does not change

(only a constant is added to V yð Þ).
Analysis of how the parameter diagram for downstream waves

depends on the channel width has confirmed that the leading zone

in this case is the excitation zone close to the channel axis (data not

shown). There exist a channel width such that its further increase

does not affect the diagram.

Upstream waves
Upstream waves demonstrate some similarity with the dowstream

waves upon changes in the ‘‘chemical’’ parameters, but this

similarity is not strong (Fig. 5). The flow stabilizes upstream waves,

as well as downstream ones. Flow results in the formation of stable

steadily moving excitation waves at the same values of the

parameter c1., at which excitation in the immobile medium rapidly

disappears. The border between the region where excitation

disappears and the excitable region (Fig. 5, bottom part, border

between region I and regions II, III), is achieved at higher flow

velocities with the decrease of c1. As for the downstream waves,

restrictons appear with the increase of flow velocity at subcritical

values of c1. These small excitation regions near the borders do not

resist the flow well and cannot move upstream, although their

velocity is much smaller than maximal flow velocity. With the

increase of flow velocity, the restrictons are stronger carried away by

flow. At c1ƒ7:6, excitation cannot exist in the form of two

restrictons and rapidly disappears in the middle of the channel. For

c1w7:6, restrictons do not appear at all, and stable excitation wave

appears (III). The ability of the wave to move against the current

increases with the increase of c1. This demonstrates the dependence

of the wall shear rate when the upstream wave is immobile with

regard to the wall (Fig. 7). At c1 values close to c1~7:6, this

dependence is strongly non-linear (Fig. 7); however, when c1

exceeds 8, it becomes almost proportional to c1.

Discussion

The relationship between the wave velocity and the stream

velocity in our study is similar to the relationships described in the

cited studies [19,23,24], which consider trigger waves in the model

of one variable. Setting c3 to zero in equations (2), we reduce them

to one equation. If u2~0 at t~0, no inhibitor would be generated

in the system: u2 x,y,tð Þ:0. With c2 also set to zero, we come to

the equation similar to that considered in [19,23,24]. However,

with a nonzero excitation threshold (unlike zero in the cited

studies) and diffusion of both variables, wave phenomena in our

study are more diverse and complex.

Figure 4. Effect of stream velocity on the evolution of (a–g)
downstream waves and (h–j) upstream waves into restrictons,
as calculated for (a–e) c1~8:1 (above-critical value for which
plane waves exist in the absence of flow), and for (f–j) c1~7:5
(subcritical value for which no plane waves exist in still
medium). Note that, for subcritical c1 , restrictons arise near the
channel wall at low stream velocities (panels h–j). Activator u1

(0vu1v0:9) is shown on the same gray scale as in Fig. 1. In
calculations, H~20 and L~400. The x and y axes are scaled differently:
y axis is eightfold expanded relative to the x axis.
doi:10.1371/journal.pone.0004454.g004

Excitation Waves in Flow

PLoS ONE | www.plosone.org 7 February 2009 | Volume 4 | Issue 2 | e4454



The shape of the front edge depends mostly on activator

transversal diffusion (Fig. 2). Inhibitor increases more slowly and

produces little effect on the front edge of the wave. This influence

of transversal diffusion is likely to be a general phenomenon for all

excitable media in the presence of flows. The same influence

likely defines that the presence of flow increases stability of excited

structures: both waves and restrictons are observed at such values

of system parameters, when the system without flow cannot be

excited. While it seems reasonable to assume that the stabilizing

effect of flow on excitation is due to shape change and transversal

diffusion, the mechanism of this interesting phenomenon requires

further elucidation.

The most interesting and immediate application of the obtained

results can be in the understanding of the regulation mechanisms

of blood coagulation. In our opinion, of particular interest in this

respect are the following results: formation of restrictons, and

ability of flow to allow wave propagation even when waves do not

exist in immobile medium. In the vascular system, there is a wide

range of wall shear rates from zero up to 2000 s21; this means that

conditions appropriate for almost all modes of wave propagation

can be found. Normal clotting is usually effectively localized at the

site of damage by specific mechanisms [14], but this can be not so

in pathology. And, in such cases, it is of interest that the self-

sustained mechanisms of clotting may lead to failures of

Figure 5. Bifurcation diagram of the model in the (a,c1) plane: (I) no wave solution exists because excitation vanishes rapidly; (II)
restrictons; (III) waves. c2~0:02, c3~5, e~0:1. Negative ordinate values correspond to upstream wave movement velocities. The calculations
were performed for H= 16; it should be noted that the upper part of the diagram does not depend on H.
doi:10.1371/journal.pone.0004454.g005
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mechanisms limiting thrombus propagation, which could assume

the form of restrictons, or flow-assisted autowave survival.

However, specific predictions about these processes and can be

done only with detailed mechanism-driven models of blood

coagulation.

It should be stressed, however, that blood coagulation is an

extremely complicated process, and blood itself is a non-

Newtonian fluid. While there are indications that the findings of

this study obtained using a simple model of an active medium and

parabolic flow are of general nature and are retained for other

systems and flow profiles, specific predictions for concrete systems

such as coagulation should be done using much more detailed and

mechanism-driven models accounting for the complexity of

biochemical reactions and hydrodynamics [27,28,29]

The study of Ermakova et al. [25] has shown that one of the

most important factors limiting the propagation of coagulation

wave is ability of vessel walls to inhibit the process. However,

possibility of restricton solutions, when excited region occupies the

central part of the vessel and is not in contact with vessel wall, is a

source of danger that this excitation will not remain localized.

Therefore, it is of great interest to learn if restricton modes of clot

formation are possible in blood and which parameter changes lead

to these solutions.

Current knowledge of coagulation is detailed, and adequate

mathematical models of the process have been developed. This

makes theoretical analysis of possibility and region of existence of

restricton solutions possible.

We experimented with a parabolic flow; however, it is clear that

qualitatively similar results would be obtained for other profiles

that, like a parabolic one, have one maximum and decline to zero

at the channel walls. Shear flow profiles of this kind are quite

widespread.

Figure 6. Restricton birth with increasing the stream velocity, as calculated for a c1 value close to a critical one (c1~8:1): (a)
Vmax~130, a~1:3; and (b) Vmax~132, a~1:32. In calculations, H~20, L~400. Profiles of u1 (thick lines) and u2 (thin lines) on the channel axis for
(c) a downstream wave and (d) restricton that emerges at close values of the parameters, as calculated for (a) and (b), correspondingly. The stream
direction is from left to right.
doi:10.1371/journal.pone.0004454.g006

Figure 7. Dependence of wall shear rate, at which upstream
wave is immobile with respect to the channel walls, on the c1

parameter. H = 16, L~400. At c1v7:67, the excitation wave is always
carried away by flow, and there is no such flow velocity, when the wave
velovity is zero. Interestingly, at c1w7:67, the dependence begins not at
zero, but at a large gradient of flow velocity.
doi:10.1371/journal.pone.0004454.g007
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We described waves that evolved in flowing medium from a

localized perturbation over the entire channel cross section (see

model description). It may well be that there are also other steady-

state solutions to model (2). This question has yet to be addressed

in future studies.
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